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Abstract:  — The ability to find short representations, i.e. to compress data, is crucial for many intelligent 
systems. This paper is devoted to data compression and a transform-based quantitative data compression 
technique involving quick enumeration in a unary-binary time-based numeral system (NS). The symbols 
comprising the alphabets of human-computer interaction languages (HCIL), which are used in an informational 
message (IM), are collected in primary code tables, such as the ASCII table. The statistical-oriented data 
compression method using unconventional timer encryption and encoding information are proposed by us. It 
was constructed probability - discrete model of the set of character sequences and characterized some 
probabilistic algorithms associated with the recovery of text by its public key and its cipher. We find the 
possibility of parallel implementation of this method by building a block of timer tags. The necessary  
estimations of complexity are obtained. The method can be used to compress SMS messages. Probabilistic-
statistical analysis and evaluation of their effectiveness are obtained. 
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1 Introduction 

The main tasks of character-coding are the creation 
of methods and tools for storage, compression, 
protection, etc. To date, many theoretical binary 
coding limits have already been practically 
achieved, but there are unused opportunities. First 
of all, they contain the so-called "timer" encoding. 
It has already been used in a binary Central 
Committee due to a partial implementation - the 
introduction of a timer. The aim of the work is to 
prove that the process of restoring text using a 
statistical text generator Gs, which operates 
according to a deterministic algorithm, can be 
unambiguously mapped onto the process of 
recording timer marks with minimal complexity. 
Thus, we one-to-one associate a text, or some 
numerical sequence, for example, a generalized 
Fibonacci sequence [1], over the alphabet X and its 
code in the timer coding system, with the alphabet 
Y, which, in particular, is the alphabet for unit 
calculus system, which is actually set by timer 
marks [1,2].  The set of all tuples of lengths  n will 
be denoted by nX [7]. The effectiveness of 
statistical analysis with subsequent data 
compression is proved.     

 

2. Review of the results of 

predecessors  

 

As shown by studies of data compression programs 
based on classical compression methods, their 
efficiency is already close to the compression limits 
defined by the classics of coding theory. Using 
concrete examples, [1, 2, 3, 4, 15] showed that 
compression after Shannon–Fano methods and their 
successors [3, 4] repeated lossless encoding 
compresses by several times the magnitude of a 
number properly corresponding to the CC of the 
incoming IM, while lossy encoding yields 
compression by tens of times. The researchers did 

not address the efficiency of D compression by 
these methods, especially when the IM's primary 
coding has entropy. But based on our preliminary 
analysis of classical compression methods' 
capabilities, the achieved 
compressiondecompression ratio of such IMs will 
not improve. 

A probabilistic-statistical analysis and estimation of 
the efficiency of a statistically oriented generator is 
compared with the over-combinatorial generator Gt 
described in [1–3].  Coding with labels on the tape 
of a machine record was started by A. Turing [3]. 
To compress and protect information, F. 
Bardachenko in [4] in the form of timer 
masquerading. We focused on the results and 
evidence of the effectiveness of the statistically 
trained text generator we proposed [2, 4, 8, 10, 13]. 
In this work we continue the investigation of author 
[10, 14, 15]. 

 

3. Timer coding in language 

communication 

In accordance with the provisions of [7, 8, 13], the 
quantitative value of a binary number in one bit, 
displayed through the direct access memory in 
ASCII, determines the sequence of quantitative 
values from 1 ... to 256(10)  records that can be used 
using 8 bits (cells). A similar number of cells will 
be needed when using a binary-single midrange 
NS(2-1). This is shown in the results table. It will be 
a combination of characters, but from 8 records for 
32, the number of one bit memory cells is: 
00000000000000000000000000000000000000000
00000000000000000000000000000001010000000
0000000000000000000000. The algorithm for 
generating such a sequence is not binary 
complexity, but shift “1”. The sequence of actions 
should be increased up to 8 times. 
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4. Main  result 

Recall the idea of an autoencoder is to use a 
descriptive map 0f , which in our case is timer 

stamp, to project input data x  on a shorter residual 
description r, from which a feature map f  can 
reconstruct it. For instance, consider a string of the 
form 1 0nx y  where 1 11...1n

n

  . Then, a descriptive 

map could be a function computing the number n of 
initial ones and copying y to the residual 
description, '( ) , :f x n y r  . Such a description map 
can be used for compression of our timer stamp. In 
this case an attribute of string is numbe of 1 in 
srting. But in first stage of timer stamp generation it 
is time of work of text generator. Our main purpose 
generate a timer stamp with maximal data 
compression and minimal time.  But due to the 
residual description a timer stamp can be 
additionally compressed.  

To control a generation of texts it is used regular 
binary counter. This is a regular binary counter, the 
frequency of which is synchronized with the 
reference time, and the readings are displayed in the 
alphanumeric notation of the language of time 
intervals. It is used for: timer interruptions, 
computational paralleling, processing distributions, 
and so on. Today, for the creation of blockchain, 
crypto currency, electronic money, internet of 
things and many other things we are trying to solve 
the problems of distributed and remote processing 
of information. 

Definition. The text generator statistically oriented 
( Gs ) is a generator that implements the necessary 
series of frequency distribution  , where  i jf f , 
characters with ordering of numbers i jn n , where 

in  — number of the symbol in the received order 
. 

Probabilistic-statistical analysis and estimation of 
the efficiency of a statistically oriented generator  
Gs  are compared with the over-combinatorial 
generator described in [1,2]. The calculated speed 
of archiving data is the largest among the world's 
analogs. The time complexity 2( )O n  from which, 
taking into account the frequency of the generator, 
it is V  easy to obtain a snooze time.  

Definition. The text generator with alphabetical 
ordering ( Gp ) is a generator that sequentially 
implements texts, generating characters in 
alphabetical order, that is, not taking into account 
the frequency of appearance of these symbols in a 
certain kind of texts. 

Theorem 1. There is a bijective mapping, and for 
the construction of the mapping, no sequential 
generation of all preceding texts is necessary for the 
given text, between the set of binary numbers and 
the set of timestamps of these numbers.  

Indeed, the timestamp of a given binary number  
а, and hence of the corresponding text, can be 
obtained from formula 

 2N a
t

V
 .    (2) 

Where  2N a  is a binary number that corresponds 
to the code of the given text (the weight of the text 
for a given symbol generation order); V  — 
frequency of the generator, 

2 ( ) ( )pN a Wh T , 

where ( )pWh T  is the complexity of the generation 
(weight) of the text T for a certain linear ordering. 
For a statistically oriented generator with a 
symbolic order    the value of the timestamp is 
given by   
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0
( )

( ) sWh T
t

V
   .     (3) 

Knowing the weight of the text, you can divide it 
into k parts. For each part, calculate the weight and 
calculate the value of the timestamp   it   1 i k  . 
Thus, a timestamp system   y t    by calculating 
the sum of the series, rather than generating a list of 
multiple hyperwords in accordance with the 
lexicographic ordering obtained  . 

Elementary random events will be considered 
symbols of the text that reach values from the 
alphabet A, and since the product, sum, the 
composition of random variables remains a random 
variable, then we consider a random variable  

  
1 1

.
j

j

n n

i j

i j

T a
 

    

A random variable is a measurement function  , 
which maps from in . That is, it is necessarily a 
really significant amount. Therefore, we introduce a 
one-to-one correspondence of the entire alphabet 
with a subset of natural numbers  capacity X . 

Also we can consider the generated text as a 
random element - a measurable function that acts 
with   in "Any abstract space."  Then "random 
event   " is:  {   | ( )    < Const } .  

Definition. The number of the symbol s A  for a 
given ordering   there is his decent number 

sn   
in this ordering, which is carried out for a statistical 
generator  Gs   according to the probabilities 
characteristic of the symbols of the selected text. 
Note that the weight of the symbol will be its 
number  in  in the frequency ordering, such, that if 

i jf f , then j in n . 

The text symbols have relative frequencies  
,sf s A , where A is alphabet of symbols with T by 

which we order them by the drop in frequency. 
Recall that the generator generates symbols in a 
given descending order sequentially by bit. The 
time and result of the work is uniquely determined 
by the timestamp. 

Definition. The text generator statistically oriented 
( Gs ) is a generator that implements the necessary 
series of frequency allocations  , where  i jf f , 
characters with ordering of the numbers i jn n , 
where 

in  is the symbol number in the received order 
 . 

Note that in the case of a parallel block generation 
of a whole text of length n simultaneously, we have 
the complexity 

1
( )

n
n i

i

i

Wh T n X




  and the corresponding value of 

the timestamp calculated using the formula: 

5 4 3 2
5 4 3 2 1 0

2 1 2
2 1 0 2 1 0

( )

( ) ( ),

a N a N a N a N a N a

c N c N c d N d N d



 

     

    
 

1 0 0 0

1 1 1 0

... ( ... )( ... ),
, , ... , ,..., .

n m n m

n m n m

n m n n m n m m

a N a N a c N c d N d

a c a c a d d a





   

       

   
 

The text symbols ,sf s A  have relative 
frequencies, where A  is the alphabet of symbols 
with T by which we order them by the frequency 
drop. Recall that the generator generates symbols in 
a given descending order sequentially by bit. The 
time and result of the work is uniquely determined 
by the timestamp. 

Generating text is as follows: first, it sorts through 
all the texts of length 1, then length 2, then 3, etc. 
And when the timer counter works, it stops the 
work without using the previous texts. Using block 
coding [3], we generate texts of length n at a time, 
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without wasting time on generating and sorting out 
the texts of smaller length.  

Definition. The timer generator 
TG , in the general 

sense, is an instrument that implements the count 
(increment) in the selected system of counting (s.c.) 
with a constant frequency and sampling. In the 
quality of system of notation can be a non-
positional system of notation, and for a timestamp a 
unary code can be used, similar to the Rice code, 
which is based on the non-position unitary calculus 
system [4].  

TG  will be used to stop the generator code text at 
the right time, when its output will be restored to 
the initial text. 

Let  1... nT a a  is a random text with fixed the 
distribution of probability 

  
1

, 1,..., , 1, 0
j

N

i i j j j

j

p a s f j N f f


     .  Then the 

conditional  mathematical expectation of the 
complexity of restoring the text is denoted by 

  SE Wh T .  

Let    1 1 1
1

n

i

ET Wh s P a s


   is the expected weight 

of the text from this branch of knowledge. 

Theorem 2. The expected complexity of the work 
of a statistically oriented text generator is less than 
the expected complexity of the simple test generator 
found in [2]. 

We find the formula of the type of conditional 
mathematical expectation and try to derive the 
general formula  

        1 1 2 2 12

1
2 11

1 | ,Nn

i i i i ii
Wh s n N P a s Wh s a s




    

where 

 
    

   

2 1 2

3 3 1 23

2
1

3 1 21

1

| ,

n

i i i

N

i i i ii

Wh s a s n N

P a s Wh s a s a s





   

   
 

and 
2i

n (
2i

n ) is the number of symbol, standing on 
the first (second) position in the desired text, which 
is determined in the order that the text generator 
has. This is the mathematical expectation of the 
weight for the variant, when the first character is 
already set correctly and the generator is looking for 
the correct variant for the 2-nd character. 
Note that on the right side we have the conditional 
weight (conditional mathematical expectation) of 
the i-th symbol, which depends on the previous 
symbols. Here recursively defined functions are 
used.  

    

   

3 1 2 3

4 4 1 2 34

3
1 2

4 1 2 31

, 1

| , ,

n

i i i i

N

i i i i ii

Wh s a s a s n N

P a s Wh s a s a s a s





    

    
       (4)  

And so on we do recursively transformations for 
symbols 

4i
s  at known 3a  and the same for the 

subsequent. The last expression is 
 1 11 1| ,...,

n ni i n iWh s a s a s
   is a  mathematical 

expectation of the weight of the remainder of the 
text. It is easy to understand that 

 1 11 1| ,...,
n n ni i n i iWh s a s a s n

   , furthermore  

 1 11 1| ,...,
n n ni i n i iWh s a s a s n

    since in addition to 
the serial number, the generator still knows the 
previous symbols from T, therefore having the 
frequencies of diagrams and trigrams T the 
generator will decide on the choice of the correct 
symbol on the nth position on average before 

   

   

1 1 2 1

1

1 2

1 1

,..., 1

1 .

n n n

n n n n nn n

i i n i i

N N

n i i i i ii i

Wh s a s a s n N

P a s n n N f n

  





 

    

     
 

Moving on in the reverse order, we obtain and 
collapse the formulas using previous formula: 
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   

 

    

  

2 1 3 2

11

1 2

1 11

2
1 3

11

2
1

1 1

,..., 1

1 1

1

n n n

nn

n n n nn

n n n nn n

i i n i i

N

n ii

N

i i i ii

N N

i i i ii i

Wh s a s a s n N

P a s

n N f n n N

f n N f n

  



 

 







 

    

  

     

   





 

 

 

 
 

 

2 1 11

1 11 1

2 1 11

2 1 11

2
1

1 1 1

2
1

1

2
1

1

1

1

1

.

n n nn

n n n nn n n

n n nn

n nn

n n nn

n nn

N

i i ii

N N N

i i i ii i i

N

i i ii

N

i ii

N

i i ii

N

i ii

n N N f n

N f f f n

n N N f n

N f n

n N N f n

f n N

  

  

  

  



  









   

 

   

  

   

 



  









 

And, consistently, we substitute: 

   3 1 4

2 1 11

3 2 2

2 2 21

3
1 4

2
21 1

1

3 2
1

1 1 1 1 1

,..., 1

( (( 1) )

( 1) ( 1)

( )

(

n n n k

n n n n nn

n

n n n

n n n nn

n n

n

i i n i i

N
N N

i i i i i ii i
i

N

i i ii

N N N N N

i i i i i i i

i i i i i

i

Wh s a s a s n N

f n N N f n f n N

n N N f n

N f f n f f n N f

n

  

  

  

  



 




    

    

    

    

   



  



    

3 2 2

1

3 2 2

1

3 2
1

1 1

3 2
1

2

1 1

1) ( 1)

)

( 1)

.

n n

nn

n

n n n

nn

n

N

i ii

N N

i i i i

i i

N

i i ii

N N

i i i i

i i

N N f n

N f n f n N

n N N f n

N f n f n N N

  



  





 



 

   

   

   

   



 



 

Let's analyze the compression ratio. 
Since the value of expression 

1

N

i ii
f n

  is minimal 
when the frequencies  1 2 ... Nf f f     answer 
ordered in descending weight 1 2 ... Nn n n   , then 
according to Chebishov's inequality [17], this 
weight is the smallest. It is clear that this value is 
less than the complexity of the work 

1
( )

n
n j

j

i

Wh T n N 



  a conventional serial text 

generator, which proves the effectiveness of a 
statistically-oriented generator.  

The end of the proof.   

We denote by 
outL  this is the sum of the lengths of 

the codes of words (or blocks of words) in the new 

alphabet, that is   
1

N

out i

i

L l C w


 .  The sum of the 

lengths of the text characters in the original 
alphabet, in the case of block coding not symbolic 

but will be denoted by  
1

N

in i

i

L l w


 , where  il w   is 

the length of the i-th block of a text.  The formula 
for the compression index gives the following result  

 

  

1

1

.
1

N

i i

i i

N

i
i i

i

l w p
N n p n

k n
N p

l C w p





 
   






 

Thus, the compression index of timer coding is 

equal to n. 

 

 5. Data compression through methods of 
improved quantitative compression in a 
unary-binary numeral system (Ns) 

In order to more fully demonstrate the benefits of 
advanced quantitative compression methods for 
D, we will begin a comparison with classical 
methods, using the quantities of the simplest 
integers as examples. There is a bijective mapping 
which is established in Theorem 1, and for the 
construction of the mapping, no sequential 
generation of all preceding texts is necessary for the 
given text, between the set of binary numbers and 
the set of timestamps of these numbers. Before 
comparing their quantities, we check the state of 
memory cells (MC). It is known that memory is 
formatted before readwrite operations are 
performed on a range of memory. Any kind of 
memory (M) can be reduced to the simplest form: 
linear memory. The state of M and its constituent 
MCs can be defined as existent or non-existent.  
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Table 2 Diagram of the time spent.                                                       
Programmatically, this looks like a corrupted MC,     
which is avoided via formattingnot included in M. 
In a binary DC, it is assumed that a single-bit MC 
 may be in one of two states: "0  1". Their 
combinations give rise to all the quantitative variety 
of the IM, which can fit into the ranges of its M. 
However, it is known that an MC's "0" state does 
not actually have a magnitude, but instead is only 
the magnitude's indication a number's lower-order 

digits. Therefore, a MC of binary M potentially 
contains a superfluous quantity. A question arises. 
Why store something superfluous in M? Indeed, a 
single-bit MC potentially open to padding with a 
number of "01"s can always be unambiguously 
updated with them. Diagram of the time spent by 
the generator (shift processor) to count the amount 
in memory M of 8 bits for different NS. We denote 
by t  the time interval of the generator pulse in 
Table 2. Using the reasoning above, we attempt to 
confirm the need for the existence of NS1-2, and not 
solely NS2-1 of arithmetic and any other numeral 
system designed to identify the magnitude of the 
positional number. We will show its advantage in 
compressing the magnitude of the simplest numbers 
in Table 1. 

Size memory 
in bits M 

Absolute valuation of a number  

NS2-1 NS1-2 NS10 

One MC 0 

1 

- 

1 

0 

1 

Two MCs 

 

00 01 

00 01 10 

00 01 10 11 

10 

110 

1110 

00 00 00 00 01 

00 00 00 01 02 

00 00 01 02 03 

Table 1. Absolute valuation of a number in bits (positions) of linear M. 

As can be seen from Table 1, as a number's bit-
length increases, the compression ratio of the 
representation of the same quantity of symbols in 
numbers in NS1-2 changes more quickly than it does 
for numbers in NS2-1 and NS10.  

In subsequent iterations of compression, this 
behavior continues thanks to a more complex 
implementation of the counting algorithms. 
Accordingly, we restrict ourselves to the result of 
representation of the second iteration of 
compression for NS1-2. This result is presented in 
Table 3. 

 

Amount of data in NSi at 1 ≤i ≤ n  

NS10 NS1 NS2 NS2-4  NS2-8 NS25

6 

256 1 11111
111 

11111111
11111111 

11111111
11111111
11111111
11111111
11111111 

256 

... ... ... ... ... ... 

8 1 11110 1111 0 11110  

7 1 1111 1111 1111  

6 1 1110 1110 1110  

5 1 111 111 111 5 

4 1 110 110 110 4 

3 1 11 11 11 3 

2 1 10 10 10 2 

1 1 01 01 01 1 

  Tim
e 

 

256
t 

28t 24t 23t 1t 
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Bit width in M Representation of 
the magnitude of a 
number  

No. 

in NS10 

 NS1-2  

One MC - 

1 

0 

1 

Two MCs 

 

10 

*10 

**10 

01 

02 

03 

Table 3. Here, the * symbol denotes a MC that can be filled with any 
digitsymbol in NS2-i, where 1  i  2n. For clarity, in Figure 1 we present a 
graphic representation of the relationships identified in Tables 1 and 2. 

 

Fig. 1. Efficiency of advanced quantitative compression methods (thick line 
corresponding to NS1-2 and classical methods for NS2-i, where 1  i  2n. A 
thin line corresponds to compression using a decimal number system 

Compression using a single binary system (NS1-2) is 
more effective because any number is recorded with 
a single timer label. Compression performance 
using a timer label based on NS1-2 is greater since 
the number of iterations in a single number system 
and, therefore, speed is 20% higher than that of a 
binary number system due to the fact that there is 

no transfer of to the higher order digit. In a binary 
counter, the time for counting unit shifts, where is 
the digit in the number. In the 2-number system, 
there is a transfer of the discharge to the senior digit 
when a maximal number of bits, i.e. number of the 
form 11111 is reached. Since prefix Kolmogorov 
complexity prefix Kolmogorov complexity satisfy a 
condition 

      * (log ( ))K f l x l f O l x  

 
f  is a attribute  of x, ( )l x  is length of plain text, ( )l f  

is length of attribute of x. Then iterated compression 
can be applied [18].   

 

  6. Conclusion 

    For quantification, a data compression index was 
applied. The presented results of the study are 
sufficient to understand the proposed compression 
methods. It should only be noted that the possibility 
of iterative data compression through a continuous 
algorithm may lead to compressing data to the size 
of the TS, which can be a single CC. The time 
required to restore a compressed IM is a secondary 
objective. It can be accelerated, for example, using 
parallel high-speed NS(1-2) counters implemented as 
processors. The main objective of this publication is 
to study the possibility of compressing information 
using an alternate (improved) quantitative method 
based on a transform-based timer-based coding 
technique. 
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