
The timer inremental compression of data and information

RUSLAN SKURATOVSKII

Department of computer science

Igor Sikorsky Kiеv Polytechnic Institute
Kiev, UKRAINE

VOLODYMYR OSADCHYY
Department of computer science

IT-GRAVITY-VO, Inc. Orlando
Florida USA,

YEVGEN OSADCHYY

National University named by Taras Shevchenko
Kiev, UKRAINE

Abstract: — The ability to find short representations, i.e. to compress data, is crucial for many intelligent
systems. This paper is devoted to data compression and a transform-based quantitative data compression
technique involving quick enumeration in a unary-binary time-based numeral system (NS). The symbols
comprising the alphabets of human-computer interaction languages (HCIL), which are used in an informational
message (IM), are collected in primary code tables, such as the ASCII table. The statistical-oriented data
compression method using unconventional timer encryption and encoding information are proposed by us. It
was constructed probability - discrete model of the set of character sequences and characterized some
probabilistic algorithms associated with the recovery of text by its public key and its cipher. We find the
possibility of parallel implementation of this method by building a block of timer tags. The necessary
estimations of complexity are obtained. The method can be used to compress SMS messages. Probabilistic-
statistical analysis and evaluation of their effectiveness are obtained.

Key-Words: - Block coding, archiving, data compression algorithm, timer coding.

Received: February 18, 2020, Revised: July 10, 2020. Accepted: July 31, 2020. Published: August 16, 2020.

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.41 Ruslan Skuratovskii, Volodymyr Osadch, Yevgen Osadchyy

E-ISSN: 2224-2880 398 Volume 19, 2020

mailto:vo@it-gravity-vo.com

1 Introduction

The main tasks of character-coding are the creation
of methods and tools for storage, compression,
protection, etc. To date, many theoretical binary
coding limits have already been practically
achieved, but there are unused opportunities. First
of all, they contain the so-called "timer" encoding.
It has already been used in a binary Central
Committee due to a partial implementation - the
introduction of a timer. The aim of the work is to
prove that the process of restoring text using a
statistical text generator Gs, which operates
according to a deterministic algorithm, can be
unambiguously mapped onto the process of
recording timer marks with minimal complexity.
Thus, we one-to-one associate a text, or some
numerical sequence, for example, a generalized
Fibonacci sequence [1], over the alphabet X and its
code in the timer coding system, with the alphabet
Y, which, in particular, is the alphabet for unit
calculus system, which is actually set by timer
marks [1,2]. The set of all tuples of lengths n will
be denoted by nX [7]. The effectiveness of
statistical analysis with subsequent data
compression is proved.

2. Review of the results of

predecessors

As shown by studies of data compression programs
based on classical compression methods, their
efficiency is already close to the compression limits
defined by the classics of coding theory. Using
concrete examples, [1, 2, 3, 4, 15] showed that
compression after Shannon–Fano methods and their
successors [3, 4] repeated lossless encoding
compresses by several times the magnitude of a
number properly corresponding to the CC of the
incoming IM, while lossy encoding yields
compression by tens of times. The researchers did

not address the efficiency of D compression by
these methods, especially when the IM's primary
coding has entropy. But based on our preliminary
analysis of classical compression methods'
capabilities, the achieved
compressiondecompression ratio of such IMs will
not improve.

A probabilistic-statistical analysis and estimation of
the efficiency of a statistically oriented generator is
compared with the over-combinatorial generator Gt
described in [1–3]. Coding with labels on the tape
of a machine record was started by A. Turing [3].
To compress and protect information, F.
Bardachenko in [4] in the form of timer
masquerading. We focused on the results and
evidence of the effectiveness of the statistically
trained text generator we proposed [2, 4, 8, 10, 13].
In this work we continue the investigation of author
[10, 14, 15].

3. Timer coding in language

communication

In accordance with the provisions of [7, 8, 13], the
quantitative value of a binary number in one bit,
displayed through the direct access memory in
ASCII, determines the sequence of quantitative
values from 1 ... to 256(10) records that can be used
using 8 bits (cells). A similar number of cells will
be needed when using a binary-single midrange
NS(2-1). This is shown in the results table. It will be
a combination of characters, but from 8 records for
32, the number of one bit memory cells is:
000
00000000000000000000000000000001010000000
0000000000000000000000. The algorithm for
generating such a sequence is not binary
complexity, but shift “1”. The sequence of actions
should be increased up to 8 times.

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.41 Ruslan Skuratovskii, Volodymyr Osadch, Yevgen Osadchyy

E-ISSN: 2224-2880 399 Volume 19, 2020

4. Main result

Recall the idea of an autoencoder is to use a
descriptive map 0f , which in our case is timer

stamp, to project input data x on a shorter residual
description r, from which a feature map f can
reconstruct it. For instance, consider a string of the
form 1 0nx y where 1 11...1n

n

 . Then, a descriptive

map could be a function computing the number n of
initial ones and copying y to the residual
description, '() , :f x n y r  . Such a description map
can be used for compression of our timer stamp. In
this case an attribute of string is numbe of 1 in
srting. But in first stage of timer stamp generation it
is time of work of text generator. Our main purpose
generate a timer stamp with maximal data
compression and minimal time. But due to the
residual description a timer stamp can be
additionally compressed.

To control a generation of texts it is used regular
binary counter. This is a regular binary counter, the
frequency of which is synchronized with the
reference time, and the readings are displayed in the
alphanumeric notation of the language of time
intervals. It is used for: timer interruptions,
computational paralleling, processing distributions,
and so on. Today, for the creation of blockchain,
crypto currency, electronic money, internet of
things and many other things we are trying to solve
the problems of distributed and remote processing
of information.

Definition. The text generator statistically oriented
(Gs) is a generator that implements the necessary
series of frequency distribution  , where i jf f ,
characters with ordering of numbers i jn n , where

in — number of the symbol in the received order 
.

Probabilistic-statistical analysis and estimation of
the efficiency of a statistically oriented generator
Gs are compared with the over-combinatorial
generator described in [1,2]. The calculated speed
of archiving data is the largest among the world's
analogs. The time complexity 2()O n from which,
taking into account the frequency of the generator,
it is V easy to obtain a snooze time.

Definition. The text generator with alphabetical
ordering (Gp) is a generator that sequentially
implements texts, generating characters in
alphabetical order, that is, not taking into account
the frequency of appearance of these symbols in a
certain kind of texts.

Theorem 1. There is a bijective mapping, and for
the construction of the mapping, no sequential
generation of all preceding texts is necessary for the
given text, between the set of binary numbers and
the set of timestamps of these numbers.

Indeed, the timestamp of a given binary number
а, and hence of the corresponding text, can be
obtained from formula

 2N a
t

V
 . (2)

Where  2N a is a binary number that corresponds
to the code of the given text (the weight of the text
for a given symbol generation order); V —
frequency of the generator,

2 () ()pN a Wh T ,

where ()pWh T is the complexity of the generation
(weight) of the text T for a certain linear ordering.
For a statistically oriented generator with a
symbolic order  the value of the timestamp is
given by

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.41 Ruslan Skuratovskii, Volodymyr Osadch, Yevgen Osadchyy

E-ISSN: 2224-2880 400 Volume 19, 2020

0
()

() sWh T
t

V
  . (3)

Knowing the weight of the text, you can divide it
into k parts. For each part, calculate the weight and
calculate the value of the timestamp  it  1 i k  .
Thus, a timestamp system  y t  by calculating
the sum of the series, rather than generating a list of
multiple hyperwords in accordance with the
lexicographic ordering obtained  .

Elementary random events will be considered
symbols of the text that reach values from the
alphabet A, and since the product, sum, the
composition of random variables remains a random
variable, then we consider a random variable

1 1

.
j

j

n n

i j

i j

T a
 

  

A random variable is a measurement function  ,
which maps from in . That is, it is necessarily a
really significant amount. Therefore, we introduce a
one-to-one correspondence of the entire alphabet
with a subset of natural numbers capacity X .

Also we can consider the generated text as a
random element - a measurable function that acts
with  in "Any abstract space." Then "random
event  " is: {  | ()  < Const } .

Definition. The number of the symbol s A for a
given ordering  there is his decent number

sn 
in this ordering, which is carried out for a statistical
generator Gs according to the probabilities
characteristic of the symbols of the selected text.
Note that the weight of the symbol will be its
number in in the frequency ordering, such, that if

i jf f , then j in n .

The text symbols have relative frequencies
,sf s A , where A is alphabet of symbols with T by

which we order them by the drop in frequency.
Recall that the generator generates symbols in a
given descending order sequentially by bit. The
time and result of the work is uniquely determined
by the timestamp.

Definition. The text generator statistically oriented
(Gs) is a generator that implements the necessary
series of frequency allocations  , where i jf f ,
characters with ordering of the numbers i jn n ,
where

in is the symbol number in the received order
 .

Note that in the case of a parallel block generation
of a whole text of length n simultaneously, we have
the complexity

1
()

n
n i

i

i

Wh T n X




 and the corresponding value of

the timestamp calculated using the formula:

5 4 3 2
5 4 3 2 1 0

2 1 2
2 1 0 2 1 0

()

() (),

a N a N a N a N a N a

c N c N c d N d N d



 

     

    

1 0 0 0

1 1 1 0

... (...)(...),
, , ... , ,..., .

n m n m

n m n m

n m n n m n m m

a N a N a c N c d N d

a c a c a d d a





   

       

   

The text symbols ,sf s A have relative
frequencies, where A is the alphabet of symbols
with T by which we order them by the frequency
drop. Recall that the generator generates symbols in
a given descending order sequentially by bit. The
time and result of the work is uniquely determined
by the timestamp.

Generating text is as follows: first, it sorts through
all the texts of length 1, then length 2, then 3, etc.
And when the timer counter works, it stops the
work without using the previous texts. Using block
coding [3], we generate texts of length n at a time,

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.41 Ruslan Skuratovskii, Volodymyr Osadch, Yevgen Osadchyy

E-ISSN: 2224-2880 401 Volume 19, 2020

without wasting time on generating and sorting out
the texts of smaller length.

Definition. The timer generator
TG , in the general

sense, is an instrument that implements the count
(increment) in the selected system of counting (s.c.)
with a constant frequency and sampling. In the
quality of system of notation can be a non-
positional system of notation, and for a timestamp a
unary code can be used, similar to the Rice code,
which is based on the non-position unitary calculus
system [4].

TG will be used to stop the generator code text at
the right time, when its output will be restored to
the initial text.

Let  1... nT a a is a random text with fixed the
distribution of probability

  
1

, 1,..., , 1, 0
j

N

i i j j j

j

p a s f j N f f


     . Then the

conditional mathematical expectation of the
complexity of restoring the text is denoted by

  SE Wh T .

Let    1 1 1
1

n

i

ET Wh s P a s


  is the expected weight

of the text from this branch of knowledge.

Theorem 2. The expected complexity of the work
of a statistically oriented text generator is less than
the expected complexity of the simple test generator
found in [2].

We find the formula of the type of conditional
mathematical expectation and try to derive the
general formula

        1 1 2 2 12

1
2 11

1 | ,Nn

i i i i ii
Wh s n N P a s Wh s a s




    

where

    

   

2 1 2

3 3 1 23

2
1

3 1 21

1

| ,

n

i i i

N

i i i ii

Wh s a s n N

P a s Wh s a s a s





   

   

and
2i

n (
2i

n) is the number of symbol, standing on
the first (second) position in the desired text, which
is determined in the order that the text generator
has. This is the mathematical expectation of the
weight for the variant, when the first character is
already set correctly and the generator is looking for
the correct variant for the 2-nd character.
Note that on the right side we have the conditional
weight (conditional mathematical expectation) of
the i-th symbol, which depends on the previous
symbols. Here recursively defined functions are
used.

    

   

3 1 2 3

4 4 1 2 34

3
1 2

4 1 2 31

, 1

| , ,

n

i i i i

N

i i i i ii

Wh s a s a s n N

P a s Wh s a s a s a s





    

    
 (4)

And so on we do recursively transformations for
symbols

4i
s at known 3a and the same for the

subsequent. The last expression is
 1 11 1| ,...,

n ni i n iWh s a s a s
  is a mathematical

expectation of the weight of the remainder of the
text. It is easy to understand that

 1 11 1| ,...,
n n ni i n i iWh s a s a s n

   , furthermore

 1 11 1| ,...,
n n ni i n i iWh s a s a s n

   since in addition to
the serial number, the generator still knows the
previous symbols from T, therefore having the
frequencies of diagrams and trigrams T the
generator will decide on the choice of the correct
symbol on the nth position on average before

   

   

1 1 2 1

1

1 2

1 1

,..., 1

1 .

n n n

n n n n nn n

i i n i i

N N

n i i i i ii i

Wh s a s a s n N

P a s n n N f n

  





 

    

     

Moving on in the reverse order, we obtain and
collapse the formulas using previous formula:

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.41 Ruslan Skuratovskii, Volodymyr Osadch, Yevgen Osadchyy

E-ISSN: 2224-2880 402 Volume 19, 2020

   

 

    

  

2 1 3 2

11

1 2

1 11

2
1 3

11

2
1

1 1

,..., 1

1 1

1

n n n

nn

n n n nn

n n n nn n

i i n i i

N

n ii

N

i i i ii

N N

i i i ii i

Wh s a s a s n N

P a s

n N f n n N

f n N f n

  



 

 







 

    

  

     

   





 

 

 
 

 

2 1 11

1 11 1

2 1 11

2 1 11

2
1

1 1 1

2
1

1

2
1

1

1

1

1

.

n n nn

n n n nn n n

n n nn

n nn

n n nn

n nn

N

i i ii

N N N

i i i ii i i

N

i i ii

N

i ii

N

i i ii

N

i ii

n N N f n

N f f f n

n N N f n

N f n

n N N f n

f n N

  

  

  

  



  









   

 

   

  

   

 



  









And, consistently, we substitute:

   3 1 4

2 1 11

3 2 2

2 2 21

3
1 4

2
21 1

1

3 2
1

1 1 1 1 1

,..., 1

(((1))

(1) (1)

()

(

n n n k

n n n n nn

n

n n n

n n n nn

n n

n

i i n i i

N
N N

i i i i i ii i
i

N

i i ii

N N N N N

i i i i i i i

i i i i i

i

Wh s a s a s n N

f n N N f n f n N

n N N f n

N f f n f f n N f

n

  

  

  

  



 




    

    

    

    

   



  



    

3 2 2

1

3 2 2

1

3 2
1

1 1

3 2
1

2

1 1

1) (1)

)

(1)

.

n n

nn

n

n n n

nn

n

N

i ii

N N

i i i i

i i

N

i i ii

N N

i i i i

i i

N N f n

N f n f n N

n N N f n

N f n f n N N

  



  





 



 

   

   

   

   



 



 

Let's analyze the compression ratio.
Since the value of expression

1

N

i ii
f n

 is minimal
when the frequencies 1 2 ... Nf f f   answer
ordered in descending weight 1 2 ... Nn n n   , then
according to Chebishov's inequality [17], this
weight is the smallest. It is clear that this value is
less than the complexity of the work

1
()

n
n j

j

i

Wh T n N 



 a conventional serial text

generator, which proves the effectiveness of a
statistically-oriented generator.

The end of the proof.

We denote by
outL this is the sum of the lengths of

the codes of words (or blocks of words) in the new

alphabet, that is   
1

N

out i

i

L l C w


 . The sum of the

lengths of the text characters in the original
alphabet, in the case of block coding not symbolic

but will be denoted by  
1

N

in i

i

L l w


 , where  il w  is

the length of the i-th block of a text. The formula
for the compression index gives the following result

 

  

1

1

.
1

N

i i

i i

N

i
i i

i

l w p
N n p n

k n
N p

l C w p





 
   







Thus, the compression index of timer coding is

equal to n.

 5. Data compression through methods of
improved quantitative compression in a
unary-binary numeral system (Ns)

In order to more fully demonstrate the benefits of
advanced quantitative compression methods for
D, we will begin a comparison with classical
methods, using the quantities of the simplest
integers as examples. There is a bijective mapping
which is established in Theorem 1, and for the
construction of the mapping, no sequential
generation of all preceding texts is necessary for the
given text, between the set of binary numbers and
the set of timestamps of these numbers. Before
comparing their quantities, we check the state of
memory cells (MC). It is known that memory is
formatted before readwrite operations are
performed on a range of memory. Any kind of
memory (M) can be reduced to the simplest form:
linear memory. The state of M and its constituent
MCs can be defined as existent or non-existent.

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.41 Ruslan Skuratovskii, Volodymyr Osadch, Yevgen Osadchyy

E-ISSN: 2224-2880 403 Volume 19, 2020

Table 2 Diagram of the time spent.
Programmatically, this looks like a corrupted MC,
which is avoided via formattingnot included in M.
In a binary DC, it is assumed that a single-bit MC
 may be in one of two states: "0  1". Their
combinations give rise to all the quantitative variety
of the IM, which can fit into the ranges of its M.
However, it is known that an MC's "0" state does
not actually have a magnitude, but instead is only
the magnitude's indication a number's lower-order

digits. Therefore, a MC of binary M potentially
contains a superfluous quantity. A question arises.
Why store something superfluous in M? Indeed, a
single-bit MC potentially open to padding with a
number of "01"s can always be unambiguously
updated with them. Diagram of the time spent by
the generator (shift processor) to count the amount
in memory M of 8 bits for different NS. We denote
by t the time interval of the generator pulse in
Table 2. Using the reasoning above, we attempt to
confirm the need for the existence of NS1-2, and not
solely NS2-1 of arithmetic and any other numeral
system designed to identify the magnitude of the
positional number. We will show its advantage in
compressing the magnitude of the simplest numbers
in Table 1.

Size memory
in bits M

Absolute valuation of a number

NS2-1 NS1-2 NS10

One MC 0

1

-

1

0

1

Two MCs

00 01

00 01 10

00 01 10 11

10

110

1110

00 00 00 00 01

00 00 00 01 02

00 00 01 02 03

Table 1. Absolute valuation of a number in bits (positions) of linear M.

As can be seen from Table 1, as a number's bit-
length increases, the compression ratio of the
representation of the same quantity of symbols in
numbers in NS1-2 changes more quickly than it does
for numbers in NS2-1 and NS10.

In subsequent iterations of compression, this
behavior continues thanks to a more complex
implementation of the counting algorithms.
Accordingly, we restrict ourselves to the result of
representation of the second iteration of
compression for NS1-2. This result is presented in
Table 3.

Amount of data in NSi at 1 ≤i ≤ n

NS10 NS1 NS2 NS2-4 NS2-8 NS25

6

256 1 11111
111

11111111
11111111

11111111
11111111
11111111
11111111
11111111

256

...

8 1 11110 1111 0 11110

7 1 1111 1111 1111

6 1 1110 1110 1110

5 1 111 111 111 5

4 1 110 110 110 4

3 1 11 11 11 3

2 1 10 10 10 2

1 1 01 01 01 1

 Tim
e

256
t

28t 24t 23t 1t

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.41 Ruslan Skuratovskii, Volodymyr Osadch, Yevgen Osadchyy

E-ISSN: 2224-2880 404 Volume 19, 2020

Bit width in M Representation of
the magnitude of a
number

No.

in NS10

 NS1-2

One MC -

1

0

1

Two MCs

10

*10

**10

01

02

03

Table 3. Here, the * symbol denotes a MC that can be filled with any
digitsymbol in NS2-i, where 1  i  2n. For clarity, in Figure 1 we present a
graphic representation of the relationships identified in Tables 1 and 2.

Fig. 1. Efficiency of advanced quantitative compression methods (thick line
corresponding to NS1-2 and classical methods for NS2-i, where 1  i  2n. A
thin line corresponds to compression using a decimal number system

Compression using a single binary system (NS1-2) is
more effective because any number is recorded with
a single timer label. Compression performance
using a timer label based on NS1-2 is greater since
the number of iterations in a single number system
and, therefore, speed is 20% higher than that of a
binary number system due to the fact that there is

no transfer of to the higher order digit. In a binary
counter, the time for counting unit shifts, where is
the digit in the number. In the 2-number system,
there is a transfer of the discharge to the senior digit
when a maximal number of bits, i.e. number of the
form 11111 is reached. Since prefix Kolmogorov
complexity prefix Kolmogorov complexity satisfy a
condition

      * (log ())K f l x l f O l x  

f is a attribute of x, ()l x is length of plain text, ()l f

is length of attribute of x. Then iterated compression
can be applied [18].

 6. Conclusion

 For quantification, a data compression index was
applied. The presented results of the study are
sufficient to understand the proposed compression
methods. It should only be noted that the possibility
of iterative data compression through a continuous
algorithm may lead to compressing data to the size
of the TS, which can be a single CC. The time
required to restore a compressed IM is a secondary
objective. It can be accelerated, for example, using
parallel high-speed NS(1-2) counters implemented as
processors. The main objective of this publication is
to study the possibility of compressing information
using an alternate (improved) quantitative method
based on a transform-based timer-based coding
technique.

References

[1] Skuratovskii R., Trembovetska O. Application of discrete structures and
numerical sequences in block codes. Naukovie Visti KPI, n.6, 68-75,
2014.

[2] Skuratovskii R.V. The method of fast timer encoding of texts. //
Cybernetics and System Analysis, 49 (1): 154-161, 2013.

[3] Douglas Lind, Brian Marcus: An introduction to symbolic dynamics
and coding, Cambridge University Press 1995.– 490 P.

[4] V. F. Bardachenko, Analysis of the Characteristics of Time-Masked
Information // USM. - 1994. - No. 3. - P.16-29.

[5] N. Koblitz, Algebraic aspects of cryptography. Vol. 3, Algorithms and
Computation in Mathematics, Springer-Verlag, Berlin, 2004.– 207 р.

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.41 Ruslan Skuratovskii, Volodymyr Osadch, Yevgen Osadchyy

E-ISSN: 2224-2880 405 Volume 19, 2020

[6] Agnieska Danek. Application of the Burrows-Wheeler Transform for
Searching for Approximate Tandem Repeats. Springer Springer-Verlag
US, 2012, pp 256-256.

[7] Osadchyy Y.O., Osadchyy O.Y., Skuratovskii R.V. // Numerical
regularities and timer coding information. Artificial intelligence. -№3.-
2017.-P.1-22.

[8] V.M. Tereshchenko, Y.O. Osadchyy, Pransforming technology of
coding information in the computer of the von Neumann architecture.
Research topics: International scientific youth school "Systems and
means of artificial intelligence (AIIS`2017).- K.- 2017.- P.210-214.

[9] Turing A. M. On Computable Numbers, with an Application to the
Entscheidungsproblem. A Correction // Proceedings of the London
Mathematical Society — 1938. — Vol. s2-43, Iss. 6. — P. 544–546. —
ISSN 0024-6115; 1460-244X — doi:10.1112/PLMS/S2-43.6.544

[10] Ruslan Skuratovskii. Parallel solution in fast methods of timer coding of
information. High Performance Computing Kyiv, October 22-23, 2018.
Source: http://hpc-ua.org/hpc-ua-18/participants/

[11] Bolotov A. A. Gashkov S. B., Frolov A. B., Chasovsky A. A. An
Elementary Introduction to Elliptic Cryptography – CompBook Vol. 2
2006 – 328 p.

[12] Volkov Y. I., Voynalovich N. M. Elements of Discrete Mathematics.
Kirovograd Central Ukrainian State Pedagogical University, 2000 y.–
174 p.

[13] Osadchyy Y.O., An Approach to Improvement of Timer Methods of
Information Security // Vis. TANG, Economic and mathematical
modeling. - 1999.– № 1.– P. 30–35 p.

[14] R. Skuratovskii, The Derived Subgroups of Sylow 2-Subgroups of the
Alternating Group and Commutator Width of Wreath Product of
Groups. Mathematics, Basel, Switzerland, (2020) № 8(4), pp. 1-19.

[15] Skuratovskii R. V., Osadchyy V. Order of Edwards and Elliptic Curves
Over Finite Field. WSEAS Transactions on Mathematics, Volume 19,
pp. 253-264, 2020.

[16] https://studfiles.net/preview/5368369/page:4/
[17] Gnatyuk, V. A. Mechanism of laser damage of transparent

semiconductors.Physica B: Condensed Matter,. pp. 308-310, 2001
[18] Arthur Franz, Oleksandr Antonenko, Roman Soletskyi. A theory of

incremental compression. Informatics and Computer Science Intelligent
Systems Applications. 2020. Vol 540. pp 2-11.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.41 Ruslan Skuratovskii, Volodymyr Osadch, Yevgen Osadchyy

E-ISSN: 2224-2880 406 Volume 19, 2020

http://hpc-ua.org/hpc-ua-18/participants/

